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1. LDI inpainting details

Given an RGBD image (where depth is obtained using
the monocular depth estimator DPT [8]), we apply agglom-
erative clustering [5] in the disparity space to obtain its color
LDI L , {Cl,Dl}Ll=1. We use the agglomerative clustering
implementation from scikit-learn [7] and set the distance
threshold to be 5, resulting in 2 ∼ 5 layers. We then inpaint
the color and depth in each layer in a depth-aware manner.

To inpaint missing contents in layer l, we treat all the
pixels between the lth layer and the farthest layer as the con-
text region (i.e., the region used as reference for inpainting).
We exclude all foreground pixels in layers nearer than layer
l because these layers may contain irrelevant pixels for in-
painting layer l. To determine the region to be inpainted, we
compute the smallest bounding box that contains all existing
pixels in layer l, and pad this bounding box in all boundaries
by 40 pixels. The missing pixels of the lth layer within this
bounding box is then set to be inpainted. We keep only in-
painted pixels whose depths are smaller than the maximum
depth of layer l so that inpainted regions do not mistakenly
occlude layers farther than layer l.

When inpainting the color and depth of layer l, we erode
the context pixels using a kernel of 3× 3 to avoid unreliable
depth predictions near the depth discontinuities as in [10].
Further, to avoid the inpainted regions in layer l to incorrectly
occlude pixels in nearer layers, we clip the inpainted depth of
each pixel in layer l to be slightly larger than the maximum
depth of this pixel in the nearer layers.

2. Scene flow diffusion details

We perform a diffusion operation to complete the scene
flow vectors in each LDI layer. Specifically, we first rep-
resent the scene flow layer as an optical flow layer and a
depth layer. The optical flow layer can be obtained from the
optical estimator directly. Each value in the depth layer is
obtained by reprojecting its corresponding depth value in the
other view into the current view. Note that only regions with
mutual correspondences have valid values.

We then diffuse each optical flow layer and depth layer

separately, so that inpainted and occluded pixels in the LDI
also have defined scene flow vectors. Specifically, we apply
a masked box filter of size 15× 15 iteratively to each optical
flow and depth layer to fill in the missing values. The mask
in each iteration indicates current non-empty pixels that
are used as reference for diffusion, and regions with mask
value equal to 1 remain unchanged throughout the diffusion.
Finally, we convert the completed optical flow and depth of
each pixel to a scene flow vector, which will later be used to
interpolate the point location at an intermediate time.

3. Network architecture

2D feature extractor. The 2D feature extractor generates a
32-dimensional feature map for each layer in the color LDI.
We adapt ResNet34 [1] as implemented in PyTorch [6] to
implement the feature extractor. The feature extractor is fully
convolutional and accepts input images of variable size. We
take a single image of size 640 × 480 × 3 as an example
input and present a detailed network architecture in Tab. 1.

Image synthesis network. We adopt a U-Net architecture
for the image synthesis network, which takes in the rendered
feature map and depth map to generate the final image. The
network contains four down-sampling and up-sampling con-
volutional blocks with skip connections, where each convolu-
tional block conducts a sequence of operations (convolution,
GroupNorm [11], and ReLU) twice.

4. Training details

When sampling a triplet on Vimeo-90K [12] dataset, we
randomly sample two frames that are 2 to 4 frames apart as
the input frames, and a random frame between them as the
ground truth. Similar idea applies to the MannequinChal-
lenge [3] dataset, except that the interval between the two
input frames ranges from 2 to 16. To train on Mannequin-
Challenge [3] dataset, we align the monocular depth map
with the SfM points by estimating a global scale and shift in
the disparity space. We discard the triplet if 1) the aligned
monocular depth maps have negative values, and 2) when
we warp the input frame to the target frame, the percentage
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Input (id: dimension) Layer Output (id: dimension)

0: 640× 480× 4 7× 7 Conv, 64, stride 2 1: 320× 240× 64
1: 320× 240× 64 3× 3 MaxPool, stride 2 2: 160× 120× 64
2: 160× 120× 64 Residual Block 1 3: 160× 120× 64
3: 160× 120× 64 Residual Block 2 4: 80× 60× 128
4: 80× 60× 128 Residual Block 3 5: 40× 30× 256
5: 40× 30× 256 3× 3 Upconv, 128, factor 2 6: 80× 60× 128
[4, 6]: 80× 60× 256 3× 3 Conv, 128 7: 80× 60× 128
7: 80× 60× 128 3× 3 Upconv, 64, factor 2 8: 160× 120× 64
[3, 8]: 160× 120× 128 3× 3 Conv, 64 9: 160× 120× 64
9: 160× 120× 64 1× 1 Conv, 32 Out: 160× 120× 32

Table 1. 2D feature extractor network architecture. ‘Conv” rep-
resents a sequence of operations: convolution, rectified linear units
(ReLU) and Batch Normalization [2]. “Upconv” represents a bilin-
ear upsampling with certain factor, followed by a “Conv” operation
with stride 1. “[·, ·]” stands for channel-wise concatenation of two
feature maps. The residual blocks are the same as those in the orig-
inal ResNet34 [1] design. The output 32-dimensional feature map
will be upsampled to have the same resolution as the input using
bilinear interpolation.

of non-empty pixels in the target image space is less than
75% (this can either mean the camera motion is too large, or
the monocular depth and SfM do not align).

5. Evaluation details
We describe the details of the experimental setup on

the Nvidia [13] and UCSD [4] dataset. For the Nvidia
dataset [13], we use the undistorted multi-view video se-
quences for evaluation. To form triplets, we first divide the
multi-view videos into multiple segments, where each seg-
ment contains images at three consecutive time steps from
all 12 camera viewpoints, resulting in 36 images in total.
We run COLMAP [9] (masking out dynamic regions) to ob-
tain the camera parameters and SfM point clouds for each
segment. The UCSD dataset [4] instead provides the pre-
computed camera parameters from COLMAP [9]. However
we still need to obtain the SfM points in order to align the
monocular depth maps. We therefore perform triangulation
using the views at a specific time step (masking out dynamic
regions) to obtain the scene structure of static regions. Since
their camera poses are fixed throughout each video sequence,
we only need to perform the triangulation once for each
multi-view video sequence.
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